Generalization Step Analysis for Privacy Preserving Data Publishing
نویسندگان
چکیده
Data publishing generate much attention over the protection of individual privacy. In this paper, we show that it is necessary to reduce the steps of generalization in order to minimize information loss in privacy preserving data publishing, but sometimes the anonymous table on basis of the method could still be attacked when an attacker can possibly determine the privacy requirement and anonymous operations by examining the published data, or its documentation, and learn the mechanism of the anonymous algorithm. We call such an attack an advanced attack. To solve the problem, the condition of attack is analyzed, and a m-threshold model is presented to decide whether the value of quasi-identifier attribute would be continuously generalized, making use of algorithm of the GSSK(Generalization Step Safe of K-anonymity) to deal with the model. Finally, computer experiments show that the GSSK algorithm can prevent the attack with little information loss.
منابع مشابه
Utility-preserving anonymization for health data publishing
BACKGROUND Publishing raw electronic health records (EHRs) may be considered as a breach of the privacy of individuals because they usually contain sensitive information. A common practice for the privacy-preserving data publishing is to anonymize the data before publishing, and thus satisfy privacy models such as k-anonymity. Among various anonymization techniques, generalization is the most c...
متن کاملA Survey of Privacy Preserving Data Publishing using Generalization and Suppression
Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...
متن کاملA Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes
Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...
متن کاملEfficient Techniques for Preserving Microdata Using Slicing
Privacy preserving publishing is the kind of techniques to apply privacy to collected vast amount of data. One of the recent problem prevailing is in the field of data publication. The data often consist of personally identifiable information so releasing such data consists of privacy problem. Several anonymization techniques such as generalization and bucketization have been designed for priva...
متن کاملBangA: An Efficient and Flexible Generalization-Based Algorithm for Privacy Preserving Data Publication
Privacy-Preserving Data Publishing (PPDP) has become a critical issue for companies and organizations that would release their data. k-Anonymization was proposed as a first generalization model to guarantee against identity disclosure of individual records in a data set. Point access methods (PAMs) are not well studied for the problem of data anonymization. In this article, we propose yet anoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDCTA
دوره 4 شماره
صفحات -
تاریخ انتشار 2010